3.1.75 \(\int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx\) [75]

3.1.75.1 Optimal result
3.1.75.2 Mathematica [C] (verified)
3.1.75.3 Rubi [A] (verified)
3.1.75.4 Maple [B] (verified)
3.1.75.5 Fricas [B] (verification not implemented)
3.1.75.6 Sympy [F]
3.1.75.7 Maxima [F]
3.1.75.8 Giac [F]
3.1.75.9 Mupad [F(-1)]

3.1.75.1 Optimal result

Integrand size = 25, antiderivative size = 123 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\frac {(a-b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 \sqrt {a} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f} \]

output
1/2*(a-b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f/a^(1/2)+ 
arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2*cos(f 
*x+e)*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f
 
3.1.75.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.29 (sec) , antiderivative size = 432, normalized size of antiderivative = 3.51 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\frac {e^{-i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos (e+f x) \left (i \left (-1+e^{2 i (e+f x)}\right )+\frac {2 e^{2 i (e+f x)} \left (2 a f x-2 b f x-i (a-b) \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+i (a-b) \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-4 \sqrt {a} \sqrt {b} \log \left (\frac {\left (-\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )+i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{2 b \left (1+e^{2 i (e+f x)}\right )}\right )\right )}{\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \sqrt {a+b \sec ^2(e+f x)}}{4 \sqrt {2} f \sqrt {a+2 b+a \cos (2 e+2 f x)}} \]

input
Integrate[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^2,x]
 
output
(Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f 
*x]*(I*(-1 + E^((2*I)*(e + f*x))) + (2*E^((2*I)*(e + f*x))*(2*a*f*x - 2*b* 
f*x - I*(a - b)*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^( 
(2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + I*(a - b)*Log[a + a*E 
^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*( 
e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 4*Sqrt[a]*Sqrt[b]*Log[((-(Sq 
rt[b]*(-1 + E^((2*I)*(e + f*x)))) + I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 
+ E^((2*I)*(e + f*x)))^2])*f)/(2*b*(1 + E^((2*I)*(e + f*x))))]))/(Sqrt[a]* 
Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]))*Sqrt[a + b 
*Sec[e + f*x]^2])/(4*Sqrt[2]*E^(I*(e + f*x))*f*Sqrt[a + 2*b + a*Cos[2*e + 
2*f*x]])
 
3.1.75.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4620, 369, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (e+f x)^2 \sqrt {a+b \sec (e+f x)^2}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x) \sqrt {b \tan ^2(e+f x)+a+b}}{\left (\tan ^2(e+f x)+1\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\frac {1}{2} \int \frac {2 b \tan ^2(e+f x)+a+b}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{2} \left (2 b \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+(a-b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{2} \left ((a-b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+2 b \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left ((a-b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{2} \left ((a-b) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} \left (\frac {(a-b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a}}+2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

input
Int[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^2,x]
 
output
((((a - b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/ 
Sqrt[a] + 2*Sqrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + 
f*x]^2]])/2 - (Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*(1 + Tan[e 
+ f*x]^2)))/f
 

3.1.75.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
3.1.75.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(515\) vs. \(2(105)=210\).

Time = 7.38 (sec) , antiderivative size = 516, normalized size of antiderivative = 4.20

method result size
default \(-\frac {\left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {-a}\, \cos \left (f x +e \right ) \sin \left (f x +e \right )+\sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sin \left (f x +e \right )-\sqrt {b}\, \ln \left (\frac {4 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )-4 \sin \left (f x +e \right ) a +4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 a -4 b}{\sin \left (f x +e \right )+1}\right ) \sqrt {-a}-\sqrt {b}\, \ln \left (-\frac {4 \left (\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {b}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) \sqrt {-a}-\ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a +\ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) b \right ) \sqrt {a +b \sec \left (f x +e \right )^{2}}\, \cos \left (f x +e \right )}{2 f \sqrt {-a}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(516\)

input
int(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/2/f/(-a)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(-a)^(1/2)* 
cos(f*x+e)*sin(f*x+e)+(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/ 
2)*sin(f*x+e)-b^(1/2)*ln(4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^ 
(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f 
*x+e)*a-a-b)/(sin(f*x+e)+1))*(-a)^(1/2)-b^(1/2)*ln(-4*(((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*(-a)^(1/2)-ln(4*(- 
a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/ 
2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a+ln(4*(-a) 
^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2) 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*b)*(a+b*sec(f 
*x+e)^2)^(1/2)*cos(f*x+e)/(1+cos(f*x+e))/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e) 
)^2)^(1/2)
 
3.1.75.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 278 vs. \(2 (105) = 210\).

Time = 0.61 (sec) , antiderivative size = 1417, normalized size of antiderivative = 11.52 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\text {Too large to display} \]

input
integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[-1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f 
*x + e) - sqrt(-a)*(a - b)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)* 
cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 
28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a 
*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x 
 + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 
 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x 
 + e)^2)*sin(f*x + e)) - 4*a*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e) 
^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f* 
x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 
 8*b^2)/cos(f*x + e)^4))/(a*f), -1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos 
(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - 8*a*sqrt(-b)*arctan(-1/2*((a - b) 
*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/c 
os(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) - sqrt(-a)*(a - 
b)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a 
^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 
28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8 
*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14* 
a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x 
+ e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)...
 
3.1.75.6 Sympy [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \sin ^{2}{\left (e + f x \right )}\, dx \]

input
integrate(sin(f*x+e)**2*(a+b*sec(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*sec(e + f*x)**2)*sin(e + f*x)**2, x)
 
3.1.75.7 Maxima [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

input
integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^2, x)
 
3.1.75.8 Giac [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2} \,d x } \]

input
integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^2, x)
 
3.1.75.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx=\int {\sin \left (e+f\,x\right )}^2\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \]

input
int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(1/2),x)
 
output
int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(1/2), x)